Additional file 1:

We describe our model formulation in terms of the malaria data set. Thus, let n_{itsk} denote the sum of weeks at risk of the children in each neighbourhood i (i=1,...115) during the period t (t=1,2,3) and climate season s (s=1,2) for a specific age group k (k=1,2). We assume that the number of new malaria cases per week Y_{itsk} in each neighbourhood i during the period t and climate season s and age group k has a Poisson distribution with mean $\mathbf{n}_{itsk} \exp(\mathbf{\mu}_{itsk})$.

The non-spatial model is defined as:

$$\log(\mu_{itsk}) = \log(n_{itsk}) + \beta_0 + \beta_t + \beta_s + \beta_{ts} + \beta_k$$

where β_t is the effect of period t, β_s , is the climate season effect, β_{ts} is the period t effect at climate season s, and β_k is the age group effect.

In the spatial model, the regional random effects b_i is incorporated into the linear predicted, thus, $\log(\mu_{itsk})$ is defined as:

$$\log(\mu_{itsk}) = \log(n_{itsk}) + \beta_0 + \beta_t + \beta_s + \beta_{ts} + \beta_k + b_i$$

For this spatial structured component, we chose a simple Gaussian intrinsic auto regression. Thus, the conditional distribution of b_i is

$$\mathbf{b}_{i} \mid \mathbf{b}_{-i} \sim \mathbf{N} \left(\mathbf{\overline{b}}_{i}, \mathbf{\sigma}_{b}^{2} \right)$$

where $\mathbf{\bar{b}_i}$ is the corresponding mean value over the m_i neighbourhoods that are geographically contiguous to i and $\mathbf{\sigma}_b^2$ is a spatial variance parameter.

The exponential of the regional random effects (e^{bi}) is the neighbourhood-specific adjusted relative risk.

The spatial+ non structured model, is that which includes the regional random effects prior to b_i , and other regional random effects without spatial structure, θ_i . It is assumed that $\theta_i \sim N(0, \sigma_\theta^2)$ where σ_θ^2 is the non-structured variance. Thus, $log(\mu_{itsk})$ is defined as:

$$\log(\mu_{itsk}) = \log(n_{itsk}) + \beta_0 + \beta_t + \beta_s + \beta_{ts} + \beta_k + b_i + \theta_i$$

Finally, in the spatial-seasonal model, the regional random effect is nested within climate season. This effect is written as $\mathbf{b_i^{(s)}}$. That is, $\mathbf{b_i^{(s)}}$ is a random effect for the *ith* region in climate season s.

For this spatial structured component, we also chose a simple Gaussian intrinsic auto regression. Thus, the conditional distribution of $\mathbf{b_i^{(s)}}$ is

$$\mathbf{b}_{i}^{(s)} \mid \mathbf{b}_{-i}^{(s)} \sim \mathbf{N} \left(\overline{\mathbf{b}}_{i}^{(s)}, \mathbf{\sigma}_{\mathbf{b}^{(s)}}^{2} \right)$$

where $\mathbf{b}_{i}^{(s)}$ is the corresponding mean value for the climate season s over the m_{i} neighbourhoods that are geographically contiguous to i and $\mathbf{\sigma}_{\mathbf{b}^{(s)}}^{2}$ is a spatial variance parameter for the climate season s. In this situation $\log(\mu_{itsk})$ is defined as:

$$\log(\mu_{itsk}) = \log(n_{itsk}) + \beta_0 + \beta_t + \beta_s + \beta_{ts} + \beta_k + b_i^{(s)}$$